МОЛЕКУЛЯРНЫЕ ХАРАКТЕРИСТИКИ ФЕРРОПТОЗА

  • Лариса Михайловна Борисова ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России
  • И. С. Голубева Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина
  • М. П. Киселева Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина

Аннотация

В настоящем обзоре обсуждаются молекулярные характеристики ферроптоза - железо-зависимой гибели клетки. Детально представлены вовлечение в ферроптоз RAS-RAF-MEK-ERK сигнального пути и потенциал-зависимых анионных каналов VDAC2 и VDAC. Также обсуждаются индукторы ферроптоза I и II типа и другие сигнальные молекулы, участвующие в ферроптозе, в частности, HSF1-HSPB1, р53, CARS, NRF2.

Литература

1. Alborzinia H., Ignashkova T.I., Dejure F.R., et al. Golgi stress mediates redox imbalance and ferroptosis in human cells // Commun. Biol. 2018. Vol. 28. No 1. P. 210. DOI: 10.1038/s42003-018-0212-6.
2. Bannai S., Tsukeda H., Okumura H. Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium // Biochem. Biophys. Res. Commun. 1977. Vol. 74. No 4. P. 1582–1588. DOI: 10.1016/0006-291x(77)90623-4
3. Basuli D., Tesfay L., Deng Z., et al. Iron addiction: A novel therapeutic target in ovarian cancer // Oncogene. 2017. Vol. 36. No 29. P. 4089-4099. DOI: 10.1038/onc.2017.11
4. Bieging K.T., Mello S.S., Attardi L.D. Unravelling mechanisms of p53-mediated tumour suppression // Nat. Rev. Cancer. 2014. Vol. 14. P. 359–370. DOI:10.1038/nrc3711
5. Bogdan A.R., Miyazawa M., Hashimoto K., et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease // Trends Biochem. Sci. 2016. Vol. 41. No 3. P. 274–286. DOI: 10.1016/j.tibs.2015.11.012.
6. Bridges R.J., Natale N.R., Patel S.A. System xc (-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS // Br. J. Pharmacol. 2012. Vol. 165. No 1. P. 20-34. DOI: 10.1111/j.1476-5381.2011.01480.x.
7. Cao J.Y., Dixon S.J. Mechanisms of ferroptosis // Cell Мol. Life Sci. 2016. Vol. 73. No 11-12. P. 2195–209. DOI: 10.1007/s00018-016-2194-1.
8. Dixon S.J., Lemberg K.M., Lamprecht M.R., et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death // Cell. 2012. Vol. 149. No 5. P. 1060–72. DOI:10.1016/j.cell.2012.03.042
9. Dixon S.J., Patel D.N., Welsch M., et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis // Elife. 2014. Vol. 3. e02523. DOI:10.7554/eLife.02523
10. Dixon S.J., Stockwell B.R. The role of iron and reactive oxygen species in cell death // Nat. Chem. Biol. 2014. Vol. 10. No 1. P. 9-17. DOI: 10.1038/nchembio.1416.
11. Dolma S., Lessnick S.L., Hahn W.C., Stockwell B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells // Cancer Cell. 2003. Vol. 3. No 3. P. 285-96. PMID: 12676586
12. Eagle H. Nutrition needs of mammalian cells in tissue culture // Science. 1955. Vol. 122. P. 501-14. DOI: 10.1126/science.122.3168.501
13. Eagle H., Piez K.A., Oyama V.I. The biosynthesis of cysteine in human cell cultures // J. Biol. Chem. 1961. Vol. 236. P. 1425–8. PMID: 13725478
14. Eling N., Reuter L., John H., et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells // Oncoscience. 2015. Vol. 2. No 5. P. 517–532. DOI:10.18632/oncoscience.160
15. Friedmann A. J.P., Schneider M., Proneth B., et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice // Nat. Cell Biol. 2014. Vol. 16. No 12. P. 1180-91. DOI: 10.1038/ncb3064.
16. Gao M., Yi J., Zhu J., et al. Role of mitochondria in Ferroptosis // Mol. Cell. 2019. Vol. 73. No 2. P. 354-363.e3. DOI: 10.1016/j.molcel.2018.10.042
17. Gaschler M.M., Andia A.A., Liu H., et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation // Nat. Chem. Biol. 2018. Vol. 14. No 5. P. 507-515. DOI: 10.1038/s41589-018-0031-6.
18. Hauck A.K., Bernlohr DA. Oxidative stress and lipotoxicity // J. Lipid. Res. 2016. Vol. 57. No 11. 1976-1986. DOI: 10.1194/jlr.R066597
19. Hong S.H., Lee D.H., Lee Y.S., et al. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression // Oncotarget. 2017. Vol. 8. No 70. P. 115164–115178. DOI: 10.18632/oncotarget.23046.
20. Huo H., Zhou Z., Qin J., et al. Erastin disrupts mitochondrial permeability transition pore (mPTP) and induces apoptotic death of colorectal cancer cells // PLoS One. 2016. Vol. 11. No 5. e0154605. DOI: 10.1371/journal.pone.0154605
21. Imai H., Matsuoka M., Kumagai T., et al. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis // Curr. Top. Microbiol. Immunol. 2017. Vol. 403. P. 143-170. DOI: 10.1007/82_2016_508
22. Jelinek A., Heyder L., Daude M., et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis // Free Radic. Biol. Med. 2018. Vol. 117. P. 45–57. DOI: 10.1016/j.freeradbiomed.2018.01.019.
23. Jiang L., Kon N., Li T., et al. Ferroptosis as a p53-mediated activity during tumour suppression // Nature. 2015. Vol. 520. P. 57–62. DOI:10.1038/nature14344
24. Lachaier E., Louandre C., Godin C., et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors // Anticancer Res. 2014. Vol. 34. P. 6417–6422. PMID: 25368241
25. Lewerenz J., Hewett S.J., Huang Y., et al. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities // Antioxid. Redox Signal. 2013. Vol. 18. No 5. P. 522–555. DOI: 10.1089/ars.2011.4391
26. Lo M., Ling V., Wang Y.Z., et al. The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance // Br. J. Cancer. 2008. Vol. 99. P. 464–72. DOI:10.1038/sj.bjc.6604485
27. Maldonado E.N., Sheldon K.L., DeHart D.N., et al. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin // J. Biol. Chem. 2013. Vol. 288. P. 11920–11929. DOI: 10.1074/jbc.M112.433847
28. Mou Y., Wang J., Wu J., et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer // Journal of Hematology & Oncology. 2019. Vol. 12. No 34. DOI: 10.1186/s13045-019-0720-y
29. Murphy T.H., Miyamoto M.., Sastre A., et al. Glutamate toxicity in a neuronal cell line involves inhibition of cysteine transport leading to oxidative stress // Neuron 1989. Vol. 2. P. 1547–1558. DOI: 10.1016/0896-6273(89)90043-3
30. Ooko E., Saeed M.E., Kadioglu O., et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells // Phytomedicine. 2015. Vol. 22. No 11. P. 1045-54. DOI: 10.1016/j.phymed.2015.08.002.
31. Sato H., Tamba M., Ishii T., et al. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins // J. Biol. Chem. 1999. Vol. 274. P. 11455–8. DOI: 10.1074/jbc.274.17.11455
32. Schott C., Graab U., Cuvelier N., et al. Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death // Front. Oncol. 2015. Vol. 5. No 131. DOI: 10.3389/fonc.2015.00131
33. Shah R., Shchepinov M.S., Pratt D.A. Resolving the role of Lipoxygenases in the initiation and execution of ferroptosis // ACS Cent. Sci. 2018. Vol. 4. No 3. P. 387–396. DOI: 10.1021/acscentsci.7b00589
34. Skouta R., Dixon S.J., Wang J., Dunn D.E., Orman M., Shimada K. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models // J. Am. Chem. Soc. 2014. Vol. 136. P. 4551–4556. DOI: 10.1021/ja411006a
35. Song X., Zhu S., Chen P., et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xc(-) activity // Curr. Biol. 2018. Vol. 28. No 15. P. 2388–2399 e5. DOI: 10.1016/j.cub.2018.05.094.
36. Sun X., Ou Z., Chen R., et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells // Hepatology. 2016. Vol. 63. No 1. P. 173-84. DOI: 10.1002/hep.28251
37. Sun X., Ou Z., Xie M., et al. HSPB1 as a novel regulator of ferroptotic cancer cell death // Oncogene. 2015. Vol. 34. No 45. P. 5617–5625. DOI: 10.1038/onc.2015.32
38. Torii S., Shintoku R., Kubota C., et al. An essential role for functional lysosomes in ferroptosis of cancer cells // Biochem. J. 2016. Vol. 473. No 6. P. 769-77. DOI: 10.1042/BJ20150658.
39. Wang H., Li J., Follett P,L., et al. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes // Eur J Neurosci. 2004. Vol. 20. P. 2049–2058. DOI:10.1111/j.1460-9568.2004.03650.x
40. Wang Y.Q., Chang S.Y., Wu Q., et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis // Front. Aging Neurosci. 2016. Vol. 8. No 308. DOI: 10.3389/fnagi.2016.00308
41. Weiwer M., Bittker J.A., Lewis T.A., et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS // Bioorg. Med. Chem. Lett. 2012. Vol. 22. P. 1822–6. DOI: 10.1016/j.bmcl.2011.09.047
42. Winterbourn C.C. Toxicity of iron and hydrogen peroxide: the Fenton reaction // Toxicol. Lett. 1995. Vol. 82-83. P. 969-74. DOI: 10.1016/0378-4274(95)03532-x
43. Wu Z., Geng Y., Lu X., Shi Y., et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis // Proc. Natl. Acad. Sci. U. S. A. 2019. Vol. 116. No 8. P. 2996–3005. DOI: 10.1073/pnas.1819728116
44. Xie Y., Hou, Song W., et al. Ferroptosis: Process and function // Cell Death and Differentiation. 2016. Vol. 23. No 3. P. 369-379. doi: 10.1038/cdd.2015.158
45. Xie Y., Zhu S., Song X., et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity // Cell Reports. 2017. Vol. 20. No 7. P. 1692-1704. DOI: 10.101 6/j.celrep.2017.07.055
46. Yagoda N., M. von Rechenberg, Zaganjor E., et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels // Nature. 2007. Vol. 447. P. 864-8. DOI: 10.1038/nature05859
47. Yang W.S., Kim K.J., Gaschler M.M., et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis // Proc. Natl. Acad. Sci. U. S. A. 2016. Vol. 113. No 34. P. E4966-75. DOI: 10.1073/pnas.1603244113.
48. Yang W.S., SriRamaratnam R., Welsch M.E. et al. Regulation of ferroptotic cancer cell death by GPX4 // Cell. 2014. Vol. 156. P. 317–31. DOI: 10.1016/j.cell.2013.12.010
49. Yang W.S, Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells // Chem Biol. 2008. Vol. 15. No 3. P. 234–45. DOI: 10.1016/j.chembiol.2008.02.010.
50. Yonezawa M., Back S.A., Gan X., et al. Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor // J Neurochem. 1996. Vol. No 67. P. 566–573. DOI: 10.1046/j.1471-4159.1996.67020566.x
51. Yu Y., Xie Y., Cao L., et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents // Mol. Cell. Oncol. 2015. Vol. 2. No 4. e1054549. DOI: 10.1080/23723556.2015.1054549
52. Yuan H., Li X., Zhang X., et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys // Res. Commun. 2016. Vol. 478. No 3. P. 1338–1343. DOI: 10.1016/j.bbrc.2016.08.124.
53. Zaffagnini G., Martens S. Mechanisms of selective autophagy // J. Mol. Biol. 2016. Vol. 428. No 9 Pt A. P. 1714–1724. DOI: 10.1016/j.jmb.2016.02.004
54. Zhu S., Zhang Q., Sun X., et al. HSPA5 regulates ferroptotic cell death in Cancer cells // Cancer Res. 2017. Vol. 77. No 8. P. 2064–2077. DOI: 10.1158/0008-5472.CAN-16-1979
Опубликована
2019-10-01
Как цитировать
БОРИСОВА, Лариса Михайловна; ГОЛУБЕВА, И. С.; КИСЕЛЕВА, М. П.. МОЛЕКУЛЯРНЫЕ ХАРАКТЕРИСТИКИ ФЕРРОПТОЗА. Сибирский медицинский журнал (Иркутск) 16+, [S.l.], v. 158, n. 3, p. 11-16, окт. 2019. ISSN 1815-7572. Доступно на: <http://smj.ismu.baikal.ru/index.php/osn/article/view/368>. Дата доступа: 25 янв. 2025
Раздел
Научные обзоры