GENETIC REGULATION OF PROTEOM IN ONTOGENESIS (MESSAGE 2). ACTIVATION AND REPRESSION OF THE PART OF THE GENOM: REGULAR EVENTS IN ONTOGENESIS
Abstract
All the various types of cells of a multicellular organism have the same number and constant sequence of DNA nucleotides. Differences between cells depend on the activity of different genes. In cells of different types different sets of genes are transcribed, that synthesize different sets of proteins. The activity of genes is controlled by proteins that are derivatives of other genes. They interact not with the genes, but with the products of their activity. The enzymatic nature of modifications performed by enzyme proteins leaves the DNA function of all variants of acetylation, methylation, phosphorylation, etc., and the constant participation of modified proteins during replication, heterochromatization, inactivation of the X chromosome, imprinting of alleles demonstrates the obligatory participation of the transcriptional DNA system in constant interaction of the genome and proteome.
References
2. Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. – Пер. с англ. – Т. ΙI. – М.: Мир, 1994. – 539 с.
3. Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. – Пер. с англ. – Т. ΙII. – М.: Мир, 1994. – 504 с.
4. Жимулев И.Ф. Общая молекулярная генетика. – Новосибирск: Сибирское университетское изд-во, 2003. – 478 с.
5. Инге-Вечтомов С.Г. Генетика с основами селекции. – М.: Высшая школа, 1989. – 592 с.
6. Корочкин Л.И. Биология индивидуального развития. – М.: Изд-во МГУ, 2002. – 264 с.
7. Льюин Б. Гены. – М.: Бином. Лаборатория знаний, 2012. – 896 с.
8. Майборода А.А. Дифференцировка пола: норма и патология. // Сибирский медицинский журнал (Иркутск). – 2016. – Т. 140. № 1. – С. 88-91.
9. Ньюссбаум Р.Л., Мак-Иннес Р.Р., Виллард Х.В. Медицинская генетика. – Пер. с англ. – М.: ГЭОТАР-Медиа, 2010. – 624 с.
10. Barlow D.P., et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the T-me locus. // Nature. – 1991. – Vol. 349. – P. 84-87.
11. Barlow D.P., Bartolomei M.S. Геномный импринтинг у млекопитающих. – М.: Техносфера, 2013. – С. 348-367.
12. Bartolomei M.S., et al. Parental imprinting of the mouse Н19 gene. // Nature. – 1991. – Vol. 351. – P. 153-155.
13. Bell A.C., Felsenfeld G. Methylation of a CTFC-dependent boundary controls imprinted expression of the Igf2 gene. // Nature. – 2000. – Vol. 405. – P. 482-485.
14. Brockdorff N., Turner B. Компенсация дозы у млекопитающих. Л. Эпигенетика. – М.: Техносфера, 2013. – С. 312-332.
15. Carred L., Willard H.F. X inovaction profile reveals extensive variability in X-linked gene expression in females // Nature. – 2005. – Vol. 434. – P. 400-404.
16. De Chirara, et al. Parental imprinting of the mouse insulin-like growts factor ІІ gene. // Cell. – 1991. – Vol. 64. – P. 849-859.
17. Ferguson-Smith A.C., et al. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. // Nature. – 1991. – Vol. 351. – P. 667-670.
18. Heard E., Mongelard E., Arnauld D., et al. Human XIST yeast artificial chromosome transgenes show partial X inactivacion center function in mouse embryonic stem cells. // Proc. Natl. Acad. Sci. – 1999. – Vol. 96. – P. 6841-6846.
19. Gross D.S., Garrard W.T. Nuclease hypersensitive sites in chromatin. // Ann. Rev. Biochem – 1988. – Vol. 57. – P. 159-197.
20. Jiang Y.H., et al. Mutation of the Angelman ubiguitin ligase in mice causes increased cytoplasmic p. 53 and deficit is of contextual learning and long-term potentiation (see comments). // Neuron. – 1998. – Vol. 21. – P. 799-811.
21. Kishino Т., et al. ИВЕЗА/Е-6-АР mutations cause Angelman syndrome. // Nat. Cenet. – 1997. – Vol. 15. – P. 70-73.
22. Lehmann-Werman R., et al. Identification of tissue-specific cell death using methylation patterus of circulating DNA. // Proceedings of the National Academy of sciences USA. – 2016. – Vol. 113 (13). – P. E1826-E1834.
23. Lyon M.F. X-chromosome inactivation: a report hipoteses. // Cytogenet. Cell. Genet. – 1998. – Vol. 80. – P. 133-137.
24. Matsuura T., et al. De novo truncating mutations in E6-AP ubiguitin –protein ligase gene (UВЕ3А) in Angelman syndrome. // Nat. Genet. – 1997. – Vol. 15. – P. 74-77.
25. Plath K., Talbot D., Harrier K.M., et al. Developmentally regulated alterations in Polycomb repressive complex L proteins on the inactive X-chromosome. // J. Cell. Biol. – 2004. – Vol. 167. – P. 1025-1035.
26. Sado T., Okuno M., Li E., Sasaki H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. // Development 2004. – Vol. 131. – P. 975-982.
27. Sado T., Fenner M.H., Tan S.S., et al. X-inactivation in the mouse embryo deficient for Dnmt1: Distinct effect of hypometylation on imprinted and random X inactivation. // Dev. Biol. – 2000. – Vol. 225. – P. 294-303.
28. Thorvaldsen J.L., et al. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Jgf2. // Cenes. Dev. – 1998. – Vol. 12. – P. 3693-3702.
29. Verona R.E., et al. Genomic imprinting: Intricacies of epigenetic regulation in crusters. // Annu. Rev. Cell Dev. Biol. – 2003. – Vol. 19. – P. 237-259.
30. Wutz A., Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. // Mol. Cell. – 2000. – Vol. 5. – P. 695-705.
REFERENCES
1. Alberts B., Bray D., Lewis J., et al. Molecular cell biology. – Trans. with English. – Vol. Ι. – Moscow: Mir, 1994. – 504 p. (in Russian)
2. Alberts B., Bray D., Lewis J., et al. Molecular cell biology. – Trans. with English. – Vol. ΙI. – Moscow: Mir, 1994. – 539 p. (in Russian)
3. Alberts B., Bray D., Lewis J., et al. Molecular cell biology. – Trans. with English. – Vol. ΙII. – Moscow: Mir, 1994. – 504 p. (in Russian)
4. Zhimulev I.F. General molecular genetics. – Novosibirsk: Sibirskoye universitetskoye izd-vo, 2003. – 478 p. (in Russian)
5. Inge-Vechtomov S.G. Genetics with the basics of breeding. – Moscow: Vysshaya shkola, 1989. – 592 p. (in Russian)
6. Korochkin L.I. Biology of individual development. – Moscow: Izd-vo MGU, 2002. – 264 p. (in Russian)
7. Lewin B. Genes. – Moscow: Binom. Laboratoriya znaniy, 2012. – 896 p. (in Russian)
8. Mayboroda A.A. Differentiation of sex: norma and pathology. // Sibirskij Medicinskij Zurnal (Irkutsk). – 2016. – Vol. 140. № 1. – P. 88-91. (in Russian)
9. Newsbaum R., McRains R.R., Willard H.V. Medical genetics. – Trans. with English. – Moscow: GEOTAR-Media, 2010. – 624 p. (in Russian)
10. Barlow D.P., et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the T-me locus. // Nature. – 1991. – Vol. 349. – P. 84-87.
11. Barlow D.P., Bartolomei M.S. Genomic imprinting in mammals. – Moscow: Technosphere, 2013. – P. 348-367. (in Russian)
12. Bartolomei M.S., et al. Parental imprinting of the mouse Н19 gene. // Nature. – 1991. – Vol. 351. – P. 153-155.
13. Bell A.C., Felsenfeld G. Methylation of a CTFC-dependent boundary controls imprinted expression of the Igf2 gene. // Nature. – 2000. – Vol. 405. – P. 482-485.
14. Brockdorff N., Turner B. Compensation of the dose in mammals. Epigenetics. – Moscow: Technosphere, 2013. – P. 312-332. (in Russian)
15. Carred L., Willard H.F. X inovaction profile reveals extensive variability in X-linked gene expression in females // Nature. – 2005. – Vol. 434. – P. 400-404.
16. De Chirara, et al. Parental imprinting of the mouse insulin-like growts factor ІІ gene. // Cell. – 1991. – Vol. 64. – P. 849-859.
17. Ferguson-Smith A.C., et al. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. // Nature. – 1991. – Vol. 351. – P. 667-670.
18. Heard E., Mongelard E., Arnauld D., et al. Human XIST yeast artificial chromosome transgenes show partial X inactivacion center function in mouse embryonic stem cells. // Proc. Natl. Acad. Sci. – 1999. – Vol. 96. – P. 6841-6846.
19. Gross D.S., Garrard W.T. Nuclease hypersensitive sites in chromatin. // Ann. Rev. Biochem – 1988. – Vol. 57. – P. 159-197.
20. Jiang Y.H., et al. Mutation of the Angelman ubiguitin ligase in mice causes increased cytoplasmic p. 53 and deficit is of contextual learning and long-term potentiation (see comments). // Neuron. – 1998. – Vol. 21. – P. 799-811.
21. Kishino Т., et al. ИВЕЗА/Е-6-АР mutations cause Angelman syndrome. // Nat. Cenet. – 1997. – Vol. 15. – P. 70-73.
22. Lehmann-Werman R., et al. Identification of tissue-specific cell death using methylation patterus of circulating DNA. // Proceedings of the National Academy of sciences USA. – 2016. – Vol. 113 (13). – P. E1826-E1834.
23. Lyon M.F. X-chromosome inactivation: a report hipoteses. // Cytogenet. Cell. Genet. – 1998. – Vol. 80. – P. 133-137.
24. Matsuura T., et al. De novo truncating mutations in E6-AP ubiguitin –protein ligase gene (UВЕ3А) in Angelman syndrome. // Nat. Genet. – 1997. – Vol. 15. – P. 74-77.
25. Plath K., Talbot D., Harrier K.M., et al. Developmentally regulated alterations in Polycomb repressive complex L proteins on the inactive X-chromosome. // J. Cell. Biol. – 2004. – Vol. 167. – P. 1025-1035.
26. Sado T., Okuno M., Li E., Sasaki H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. // Development 2004. – Vol. 131. – P. 975-982.
27. Sado T., Fenner M.H., Tan S.S., et al. X-inactivation in the mouse embryo deficient for Dnmt1: Distinct effect of hypometylation on imprinted and random X inactivation. // Dev. Biol. – 2000. – Vol. 225. – P. 294-303.
28. Thorvaldsen J.L., et al. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Jgf2. // Cenes. Dev. – 1998. – Vol. 12. – P. 3693-3702.
29. Verona R.E., et al. Genomic imprinting: Intricacies of epigenetic regulation in crusters. // Annu. Rev. Cell Dev. Biol. – 2003. – Vol. 19. – P. 237-259.
30. Wutz A., Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. // Mol. Cell. – 2000. – Vol. 5. – P. 695-705.