Genetic heterogeneity and phenotypic individuality in the human population (Message 1)
Abstract
Genetically, humans differ in the alleles of species-specific genes. The main source of genetic heterogeneity is combinational variability, which creates a fantastic variety of possible combinations of alleles while maintaining personal individuality. People do not differ in quality characteristics, people differ from each other in the variants of the same qualities and variants of their combinations. Gender differences are the basic fundamental characteristic of the human population, are preserved in a one-to-one relationship, display a genetic dependence on one pair of heterochromosomes, which are always combined in a homo-or heterozygous state. Two autosomes give three variants of genotypes, and the ratio of homo-and heterozygotes in the population obeys Hardy-Weinberg’s law, the ratio of homo-and heterozygotes does not correspond to a 1: 1 equality. Combinations of autosomal alleles in the homozygous and heterozygous state are controlled in the population by the frequency of distribution across the sex, as a result, variants of equally probable and unequal inheritance of the trait or disease appear in the progeny. The number of variants of unequal inheritance is enhanced by the degree of gene penetrance, sexual differences in the number of germ-line cell divisions, the characteristics of maternal inheritance of mitochondrial DNA, and probably a number of reasons that are not yet clear. In the second report, it is intended to discuss the reasons for the similarities and differences in the psycho-physiological personality traits of men and women.
References
2. Альбертс Б., Брей Д., Льюис Дж. Молекулярная биология клетки. В 5 томах: Т. 4. М.: Мир, 1987. 197 с.
3. Альбертс Б., Брей Д., Хопкинс К. Основы молекулярной биологии клетки. 2-е издание. М.: Лаборатория знаний, 2018. 768 с.
4. Бычков Н.П. Клиническая генетика. М.: ГЭОТАР-Медиа, 2013. 592 с.
5. Вилли К. Биология. М.: Мир, 1968. 808 с.
6. Грин Н., Стаут У., Тейлор Д. Биология. В 3 томах. Т. 3. М.: Бионом; Лаборатория знаний, 2013. С.451.
7. Жимулев И.Ф. Общая молекулярная генетика. Новосибирск: Сибирское университетское издательство, 2003. С.478.
8. Зайчик А.И., Чурилов А.П. Механизмы развития болезней и синдромов. Т. 1. СПб.: ЭЛБИ-СПб, 2002. С.507.
9. Инге-Вечтомов С.Г. Генетика с основами селекции. М.: Высшая школа, 1989. С.591.
10. Льюин Б. Гены. Перевод с англ. М.: Бином, 2011. С.896.
11. Майборода А.А. Молекулярно-генетические основы онкогенеза // Сибирский медицинский журнал (Иркутск). 2013. Т. 116. №1. С.134-138.
12. Майборода А.А. Генетический полиформизм: теория и практика // Сибирский медицинский журнал (Иркутск). 2014. №8. С.125-129.
13. Майборода А.А. Дифференцировка пола: норма и патология // Сибирский медицинский журнал (Иркутск). 2016. Т. 140. №1.С.88-91.
14. Мазурин И.О., Володько Н.В., Стариковская Е.Б., Сукерник О.Н. Митохондриальный геном и митохондриальные заболевания человека // Молекулярная биология. 2010. Т. 44. №5. С.755-772.
15. Ньюсбаум Л., Мак-Иннес Р., Виллард Ф. Медицинская генетика. М.: ГЭОТАР-Медиа, 2010. С.624.
16. Патрушев М.В., Каменский П.А., Мазурин И.О. Мутации митохондриальной ДНК и методы их коррекции // Биохимия. 2014. Т. 79. Вып. 11. С.1417-1428.
17. Сатаева Т.П., Ковальчук А.В., Кутя С.А. Жизненный цикл сперматозоида. Норма и нарушения // Крымский журнал экспериментальной и клинической медицины. 2018. Т. 44. №5. С.755-772.
18. Шиффман Ф.Дж. Патофизиология крови. Пер. с англ. М.: «Издательство Бином», 2017. 448 с.
19. Chinnery P.F., Turmbul D.M. Mitochondrial DNA and diseases // Lancet. 1999. Vol. 354. P.117-121.
20. Conrad D.F., Keebler J.E., DePristo M.A., et al; 1000 Genomes Project. Variation in genome-wide mutation rates within and between human families // Nat Genet. 2011. Vol. 43. №7. P.712-714. DOI: 10.1038/ng.862.
21. Goldmann J.M., Seplyarskiy V.B., Wong W.S.W., et al. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence // Nat Genet. 2018. Vol. 50. №4. P.487-492. DOI: 10.1038/s41588-018-0071-6.
22. Keightley P.D. Rates and fitness consequences of new mutations in humans // Genetics. 2012. Vol. 190. №2. P.295-304. DOI: 10.1534/genetics.111.134668.
23. Kong A., Frigge M.L., Masson G., et al. Rate of de novo mutations and the importance of father’s age to disease risk // Nature. 2012. Vol. 488. №7412. P.471-5. DOI: 10.1038/nature11396.
24. Wong W.S., Solomon B.D., Bodian D.L., et al. New observations on maternal age effect on germline de novo mutations // Nat Commun. 2016. Vol. 7. P.10486. DOI: 10.1038/ncomms10486.
REFERENCES
1. Ayala F.J., Kiger J.A. Modern genetics. In 3 vol.: Vol. 3. Translated from English. Moscow: Mir, 1987. (in Russian)
2. Alberts B., Bray D., Lewis J. Molecular biology of the cell. In 5 volumes. Moscow: Mir, 1987. Vol. 4. (in Russian)
3. Alberts B., Bray D., Hopkins K. Basics of molecular cell biology. 2nd edition. Moscow: Laboratory of Knowledge, 2018. (in Russian)
4. Bychkov N.P. Clinical genetics. Moscow: GEOTAR-Media, 2013. (in Russian)
5. Willie K. Biology. M .: Mir, 1968. P.808.
6. Green N., Stout U., Taylor D. Biology. In 3 volumes. Vol. 3. Moscow: Bion; Laboratory of Knowledge, 2013. (in Russian)
7. Zhimulev I.F. General Molecular Genetics. Novosibirsk: Siberian University Publishing House, 2003. (in Russian)
8. Zaychik A.I., Churilov A.P. Mechanisms of development of diseases and syndromes. Vol. 1. St. Petersburg: ELBI-SPb, 2002. (in Russian)
9. Inge-Vechtomov S.G. Genetics with the basics of selection. Moscow: Higher School, 1989. (in Russian)
10. Lewin B. Genes. Translation from English Moscow: Binom, 2011. (in Russian)
11. Mayboroda A.A. Molecular genetic basis of oncogenesis // Siberskij Medicinskij Zurnal (Irkutsk). 2013. Vol. 116. №1. P.134-138. (in Russian)
12. Mayboroda A.A. Genetic polyformism: theory and practice // Siberskij Medicinskij Zurnal (Irkutsk). 2014. №8. P.125-129.
13. Mayboroda A.A. Sex differentiation: norm and pathology // Siberskij Medicinskij Zurnal (Irkutsk). 2016. Vol. 140. №1. P.88-91. (in Russian)
14. Mazurin I.O., Volodko N.V., Starikovskaya E.B., Sukhernik O.N. Mitochondrial genome and human mitochondrial diseases // Molekulyarnaya biologiya. 2010. Vol. 44. №5. P.755-772. (in Russian)
15. Newsbaum L., McInnes R., Willard F. Medical genetics. Moscow: GEOTAR-Media, 2010. P.624. (in Russian)
16. Patrushev M.V., Kamensky P.A., Mazurin I.O. Mutations of mitochondrial DNA and methods for their correction // Biokhimiya. 2014. Vol. 79. Rel. 11. P.1417-1428. (in Russian)
17. Sataeva T.P., Kovalchuk A.V., Kutya S.A. The life cycle of the sperm. Norm and violation // Krymskiy zhurnal eksperimental’noy i klinicheskoy meditsin. 2018. Vol. 44. №5. P.755-772. (in Russian)
18. Shiffman F.J. Pathophysiology of blood. Per. from English. Moscow: Binom, 2017. 448 p. (in Russian)
19. Chinnery P.F., Turmbul D.M. Mitochondrial DNA and diseases // Lancet. 1999. Vol. 354. P.117-121.
20. Conrad D.F., Keebler J.E., DePristo M.A., et al; 1000 Genomes Project. Variation in genome-wide mutation rates within and between human families // Nat Genet. 2011. Vol. 43. №7. P.712-714. DOI: 10.1038/ng.862.
21. Goldmann J.M., Seplyarskiy V.B., Wong W.S.W., et al. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence // Nat Genet. 2018. Vol. 50. №4. P.487-492. DOI: 10.1038/s41588-018-0071-6.
22. Keightley P.D. Rates and fitness consequences of new mutations in humans // Genetics. 2012. Vol. 190. №2. P.295-304. DOI: 10.1534/genetics.111.134668.
23. Kong A., Frigge M.L., Masson G., et al. Rate of de novo mutations and the importance of father’s age to disease risk // Nature. 2012. Vol. 488. №7412. P.471-5. DOI: 10.1038/nature11396.
24. Wong W.S., Solomon B.D., Bodian D.L., et al. New observations on maternal age effect on germline de novo mutations // Nat Commun. 2016. Vol. 7. P.10486. DOI: 10.1038/ncomms10486.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.